Obstruction Certificates for Geometrically Defined Graph (and Digraph) Classes

Pavol Hell, Simon Fraser University

ATCAGC Durham, January 9, 2017

Plan

Emphasis on obstruction characterizations

- Interval graphs
- List homomorphisms
- Interval bigraphs and digraphs
- Bi-arc digraphs
- Circular arc graphs

< ∃ >

Plan

Emphasis on obstruction characterizations

- Interval graphs
- List homomorphisms
- Interval bigraphs and digraphs
- Bi-arc digraphs
- Circular arc graphs

Mentioning joint work with

- Arash Rafiey
- Tomás Feder
- Jing Huang
- Juraj Stacho
- Mathew Francis

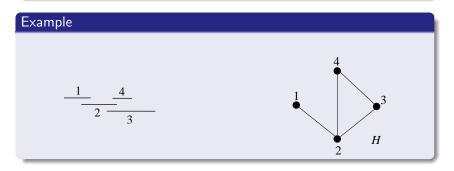
A 10

- - E + - E +

Interval graph

Vertices v can be represented by intervals I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$



・ 同 ト ・ ヨ ト ・ ヨ ト

э

Algorithms

O(m + n) recognition algorithms

Booth-Lueker 1976, Korte-Mohring 1989, Habib-McConnell-Paul-Viennot 1998, Corneil-Olariu-Stewart 1998

Greedy O(n) optimization algorithms

Gavril 1974, Rose-Tarjan-Lueker 1976

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Algorithms

O(m + n) recognition algorithms

Booth-Lueker 1976, Korte-Mohring 1989, Habib-McConnell-Paul-Viennot 1998, Corneil-Olariu-Stewart 1998

Greedy O(n) optimization algorithms

Gavril 1974, Rose-Tarjan-Lueker 1976

Applications

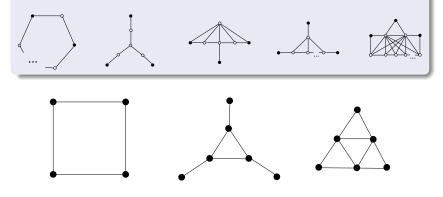
Food webs, resource allocation, genetics, etc.

Benzer 1959, Cohen 1978, Klee 1969

・ 同 ト ・ ヨ ト ・ ヨ ト

H is an interval graph \iff H has no induced subgraph from

H is an interval graph $\iff H$ has no induced subgraph from



H is an interval graph $\iff H$ has no induced subgraph from

H is an interval graph $\iff H$ has no induced subgraph from

Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third

H is an interval graph $\iff H$ has no induced subgraph from

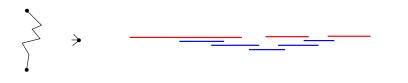
Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third

H is an interval graph $\iff H$ has no induced subgraph from

Asteroidal triple (AT)

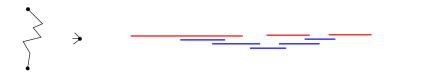
Any two joined by a path avoiding the neighbours of the third



H is an interval graph \iff H has no induced subgraph from

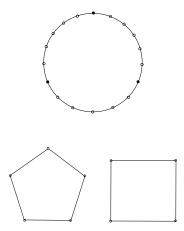
Lekkerkerker-Boland 1962

H is an interval graph \iff *H* has no AT or induced C_k , $k \ge 4$.

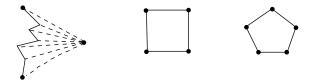


A Structural Characterization

A Structural Characterization



H is an interval graph \iff *H* has no AT or induced C_4, C_5 .



Min-ordering

H is an interval graph

\iff

V(H) can be linearly ordered by < so that

$$u \sim v, \, u' \sim v'$$
 and $u < u', \, v' < v \implies u \sim v'$

- - E + - E +

э

Min-ordering

H is an interval graph

V(H) can be linearly ordered by < so that

$$u \sim v, \, u' \sim v'$$
 and $u < u', \, v' < v \implies u \sim v'$

Dotted edge cannot be absent

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

→ < ∃→

Min-ordering

H is an interval graph

\iff

V(H) can be linearly ordered by < so that

$$u \sim v, u' \sim v' \implies \min(u, u') \sim \min(v, v')$$

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

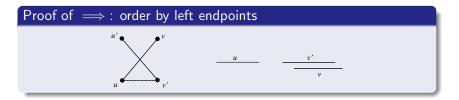
/□ ▶ < 글 ▶ < 글

An Ordering Characterization

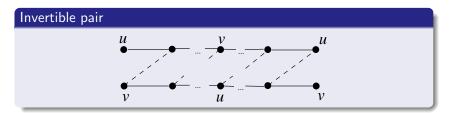
H is an interval graph

H has a *min ordering*, i.e., V(H) can be linearly ordered by < so that

$$u \sim v, \, u' \sim v'$$
 and $u < u', \, v' < v \implies u \sim v'$



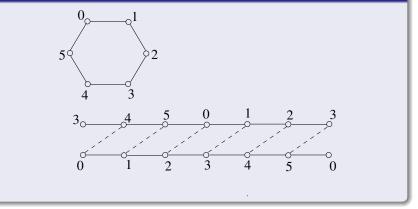
Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes



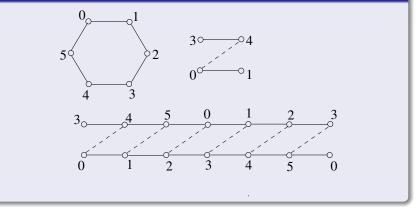
Dashed line = non-edge

- ₹ 🖬 🕨

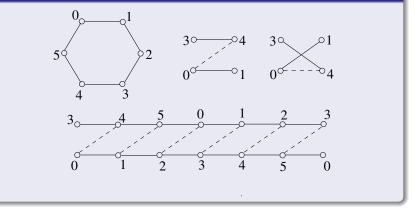
A graph with an invertible pair cannot have a min ordering

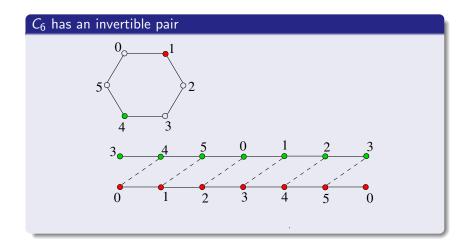


A graph with an invertible pair cannot have a min ordering

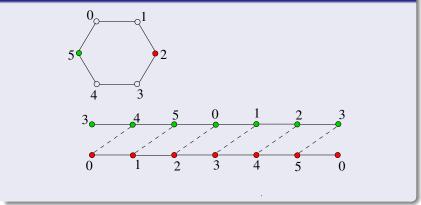


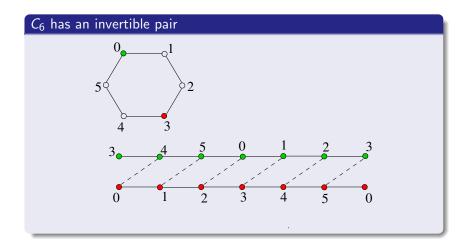
A graph with an invertible pair cannot have a min ordering





Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes





Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

The following statements are equivalent

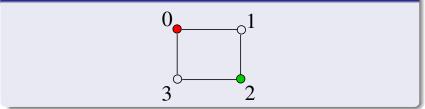
- G is an interval graph
- Q G has a min ordering
- G has no invertible pair
- G has no AT or induced C_4 or C_5

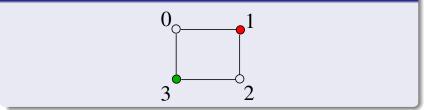
The following statements are equivalent

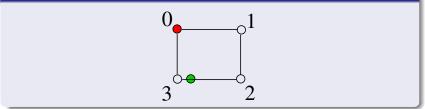
- G is an interval graph
- Q G has a min ordering
- G has no invertible pair
- G has no AT or induced C_4 or C_5

Shown: 1 \implies 2, 2 \implies 3, and 4 \implies 1

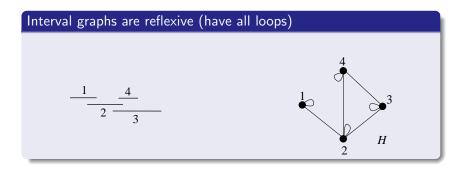
To show: 3 \implies 4



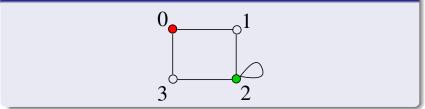




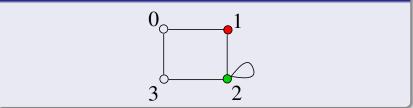
<ロ> <同> <同> < 同> < 同>



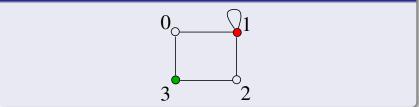
伺 ト く ヨ ト く ヨ ト



<ロ> <同> <同> < 同> < 同>

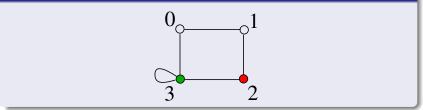


<ロ> <同> <同> < 同> < 同>



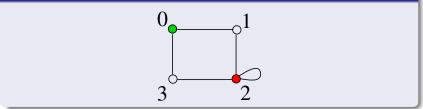
<ロ> <同> <同> < 同> < 同>

Cycles C_4 , C_5 and all AT have an invertible pair

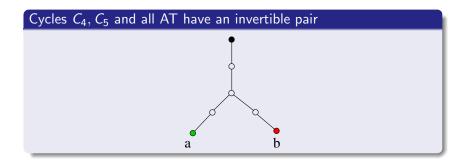


<ロ> <同> <同> < 同> < 同>

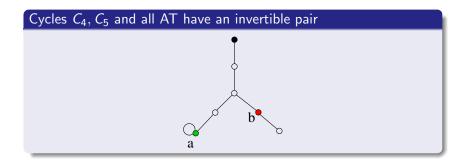
Cycles C_4 , C_5 and all AT have an invertible pair



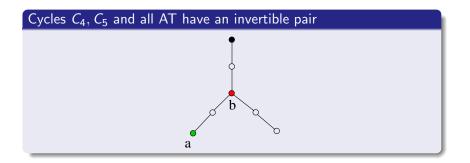
<ロ> <同> <同> < 同> < 同>



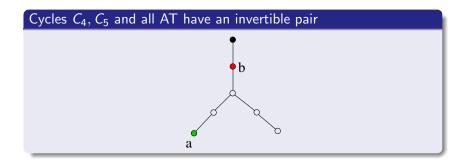
イロン イロン イヨン イヨン



<ロ> <同> <同> < 同> < 同>

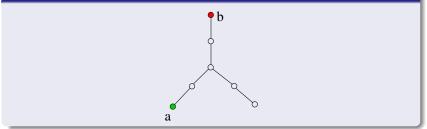


<ロ> <同> <同> < 同> < 同>



イロン イロン イヨン イヨン

Cycles C_4 , C_5 and all AT have an invertible pair

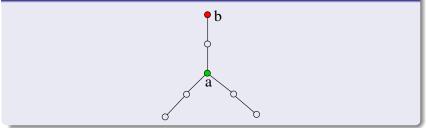


<ロ> <同> <同> < 同> < 同>

Cycles C_4 , C_5 and all AT have an invertible pair b b a b a b

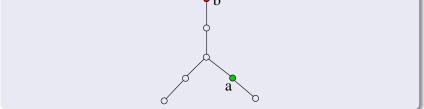
<ロ> <同> <同> < 同> < 同>

Cycles C_4 , C_5 and all AT have an invertible pair



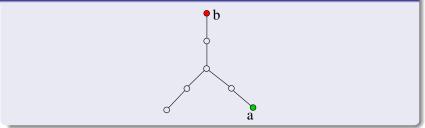
- 4 回 2 - 4 □ 2 - 4 □

Cycles *C*₄, *C*₅ and all AT have an invertible pair • b



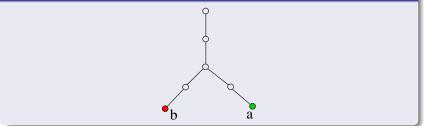
<ロ> <同> <同> < 同> < 同>

Cycles C_4 , C_5 and all AT have an invertible pair



<ロ> <同> <同> < 同> < 同>

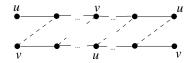
Cycles C_4 , C_5 and all AT have an invertible pair



<ロ> <同> <同> < 同> < 同>

A New Characterization

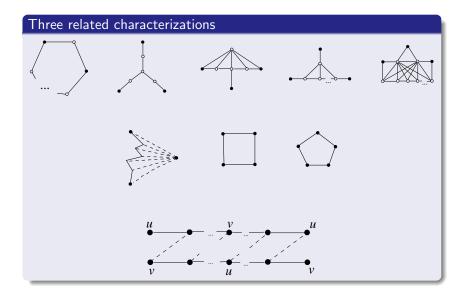
H is an interval graph \iff it has no invertible pair



Feder+H+Huang+Rafiey 2012

-∢ ≣ ▶

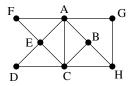
Obstructions to Interval Graphs



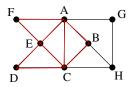
Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty

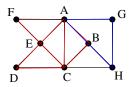
- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty



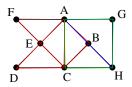
- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty



- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty



- Anne met Felicia, Cynthia, Georgia, Emilie, and Betty
- Betty met Cynthia, Anne, and Helen
- Cynthia met Anne, Emily, Diane, Betty, and Helen
- Diane met Cynthia and Emily
- Emily met Felicia, Cynthia, Diane, and Anne
- Felicia met Emily and Anne
- Georgia met Anne and Helen
- Helen met Cynthia, Georgia, and Betty



O(m + n) certifying recognition algorithm

Either produces an interval representation or an AT or an induced cycle $> 3\,$

Kratsch-McConnell-Mehlhorn-Spinrad 2006

伺 ト く ヨ ト く ヨ ト

э

The list homomorphism problem for a graph H

Given a graph G with lists $L(v) \subseteq V(H), v \in V(G)$, is there a homomorphism $f : G \to H$ (vertex-mapping with $u \sim v \implies f(u) \sim f(v)$) such that each $f(v) \in L(v)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

The list homomorphism problem for a graph H

Given a graph G with lists $L(v) \subseteq V(H), v \in V(G)$, is there a homomorphism $f : G \to H$ (vertex-mapping with $u \sim v \implies f(u) \sim f(v)$) such that each $f(v) \in L(v)$

Reflexive graph H

If H is has a min ordering then the list homomorphism problem for H admits a polynomial time algorithm

Maurer-Sudborough-Welzl 1981

(人間) ト く ヨ ト く ヨ ト

The list homomorphism problem for a graph H

Given a graph G with lists $L(v) \subseteq V(H), v \in V(G)$, is there a homomorphism $f : G \to H$ (vertex-mapping with $u \sim v \implies f(u) \sim f(v)$) such that each $f(v) \in L(v)$

Reflexive graph H

If H is has a min ordering then the list homomorphism problem for H admits a polynomial time algorithm

Maurer-Sudborough-Welzl 1981

Dichotomy for reflexive graphs H

If H is an interval graph then the list homomorphism problem for H admits a polynomial time algorithm, otherwise it is NP-complete

Feder-H 1998

イロン 不同 とくほう イロン

Bipartite graphs with red vs blue vertices

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Bigraphs

Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r , J_b (for r red and b blue)

 $r \sim b \iff I_r \cap J_b \neq \emptyset$

・ 同 ト ・ ヨ ト ・ ヨ ト

Bigraphs

Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r , J_b (for r red and b blue)

 $r \sim b \iff I_r \cap J_b \neq \emptyset$

伺 ト イヨト イヨト

-

Bigraphs

Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r , J_b (for r red and b blue)

 $r \sim b \iff I_r \cap J_b \neq \emptyset$

・ 同 ト ・ ヨ ト ・ ヨ ト

Sen-Das-Roy-West 1989

No obstruction characterizations, recognition $O(n^{15})$ Mueller 1997

Faster algorithms claimed by Rafiey 2013 and by Das 2013

Min ordering of a bigraph H

A linear ordering < of V(H) so that

$$u \sim v, u' \sim v'$$
 and $u < u', v' < v \implies u \sim v'$

伺 ト く ヨ ト く ヨ ト

э

Min ordering of a bigraph H

A linear ordering < of V(H) so that

$$u \sim v, \, u' \sim v'$$
 and $u < u', \, v' < v \implies u \sim v'$

御 と く ヨ と く ヨ と

Two geometric representations

H has a min ordering $\iff \overline{H}$ is a circular arc graph

伺 ト イヨト イヨト

э

Two geometric representations

H has a min ordering $\iff \overline{H}$ is a circular arc graph

H has a min ordering $\iff H$ is a 2-directional ray graph

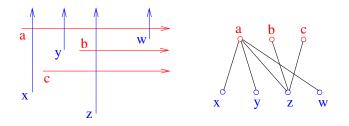
Feder, H and Huang 1999

Shrestha, Tayu, and Ueno 2010, H+Rafiey 2011

・ 同 ト ・ ヨ ト ・ ヨ ト

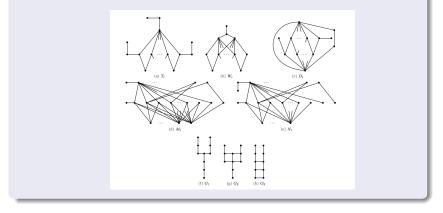
A 2DR graph

Intersection graph of a family of UP and RIGHT rays



A bigraph H is a 2DR graph \iff

• does not contain an induced cycle or any subgraph from



Trotter and Moore 1976

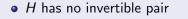
A bigraph H is a 2DR graph \iff

- does not contain an induced subgraph from the list
- *H* has no induced $C_{>4}$ and no edge-asteroid

伺 ト く ヨ ト く ヨ ト

A bigraph H is a 2DR graph \iff

- does not contain an induced subgraph from the list
- *H* has no induced $C_{>4}$ and no edge-asteroid



Trotter and Moore 1976; H and Huang 2004; H and Rafiey 2011; Shrestha, Tayu, and Ueno 2010

伺 と く ヨ と く ヨ と

Similarities to interval graphs

- similar geometric representations
- similar obstructions
- similar ordering characterization

- similar geometric representations
- similar obstructions
- similar ordering characterization
- similar polynomial time algorithm for the list homomorphism problem to a 2DR graph H

- similar geometric representations
- similar obstructions
- similar ordering characterization
- similar polynomial time algorithm for the list homomorphism problem to a 2DR graph H

Hell-Rafiey

$O(n^2)$ recognition

.

- similar geometric representations
- similar obstructions
- similar ordering characterization
- similar polynomial time algorithm for the list homomorphism problem to a 2DR graph *H*

Hell-Rafiey

$O(n^2)$ recognition

Open

An O(m + n) recognition algorithm?

伺 ト イヨト イヨト

2DR graphs are a better analogue of interval graphs than interval bigraphs

A B + A B +

2DR graphs are a better analogue of interval graphs than interval bigraphs

2DR graphs are more general than interval bigraphs

- *H* is a 2DR graph $\iff \overline{H}$ is a circular arc graph
- *H* is an interval bigraph ↔ *H* is a circular arc graph that can be represented without two arcs covering the circle

H and Huang 2004

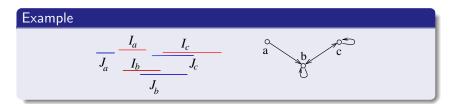
伺 ト イ ヨ ト イ ヨ ト

Digraphs

An interval digraph

Vertices can be represented by pairs of intervals I_v , J_v , so that

$$v \to w \iff I_v \cap J_w \neq \emptyset$$



Sen-Das-Roy-West 1989

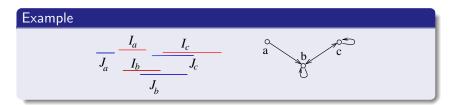
伺 ト く ヨ ト く ヨ ト

Digraphs

An interval digraph

Vertices can be represented by pairs of intervals I_v , J_v , so that

$$v \to w \iff I_v \cap J_w \neq \emptyset$$



Sen-Das-Roy-West 1989

No obstruction characterization; $O(n^{15})$ recognition Mueller 1997

Faster algorithms claimed by Rafiey 2013 and by Das 2013

(人間) ト く ヨ ト く ヨ ト

A min ordering of H

V(H) can be linearly ordered by < so that

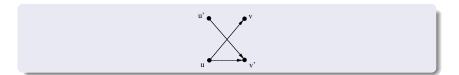
$$u
ightarrow v, u'
ightarrow v'$$
 and $u < u', v' < v \implies u
ightarrow v'$

御 と く ヨ と く ヨ と

A min ordering of H

V(H) can be linearly ordered by < so that

$$u
ightarrow v, u'
ightarrow v'$$
 and $u < u', v' < v \implies u
ightarrow v'$



御 と く ヨ と く ヨ と

Reflexive Digraphs

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

▶ < ≣ ▶</p>

A geometric representation

A reflexive digraph has has a min ordering \iff it is an adjusted interval digraph

Feder+H+Huang+Rafiey 2012

→ 3 → < 3</p>

A geometric representation

A reflexive digraph has has a min ordering \iff it is an adjusted interval digraph

Feder+H+Huang+Rafiey 2012

Adjusted interval digraphs

Vertices can be represented by pairs of *adjusted* intervals I_v, J_v , so that

$$v o w \Longleftrightarrow I_v \cap J_w
eq \emptyset$$

同 ト イ ヨ ト イ ヨ ト

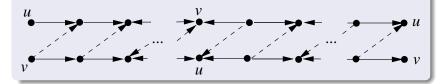
A reflexive digraph H an adjusted interval digraph if and only if

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

< ≣ > <

A reflexive digraph H an adjusted interval digraph if and only if

it has no invertible pair



- similar geometric representations
- similar obstructions
- similar ordering characterization
- similar polynomial time algorithm for the list homomorphism problem to an adjusted interval digraph *H*

$O(n^4)$ recognition algorithm

Open

A more efficient recognition algorithm?

伺 ト イヨト イヨト

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into

A B > A B >

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

同 ト イ ヨ ト イ ヨ ト

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles

Each directed cycle in an adjusted interval digraph contains a digon

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dichromatic number of H

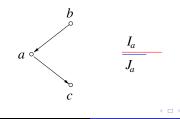
The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles



Dichromatic number of H

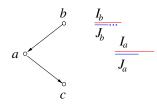
The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles



Dichromatic number of H

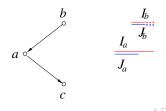
The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles



Dichromatic number of H

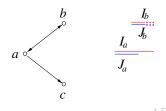
The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

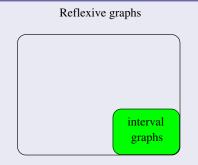
Hernandez-Cruz and H, 2014

Directed cycles



The World of Digraphs

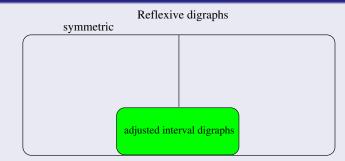
Interval-like graphs



١

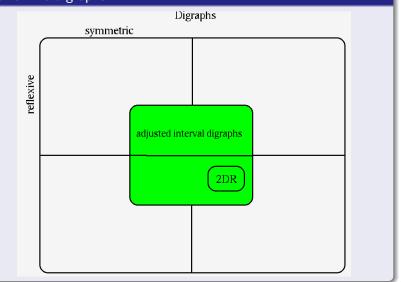
The World of Digraphs

Interval-like digraphs



The World of Digraphs

Interval-like digraphs



Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

Interval-like digraphs

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

Image: A Image: A

Interval-like digraphs

Min-orderable digraphs?

• • = • • = •

Interval-like digraphs

Min-orderable digraphs?

- Geometric representation?
- Obstruction characterization?
- Polynomial recognition algorithm?

< ∃ →

The following are equivalent

- *H* has a min ordering
- *H* is a bi-arc digraph
- *H* has no invertible circuit (testable in $O(n^4)$)

H+Rafiey 2016

→ 3 → < 3</p>

Bi-Arc Digraphs

A bi-arc digraph H

Representable by two consistent families of circular arcs

$$I_v, v \in V(H)$$
, and $J_v, v \in V(H)$,
 $uv \in E(H) \iff I_u \cap J_v = \emptyset$

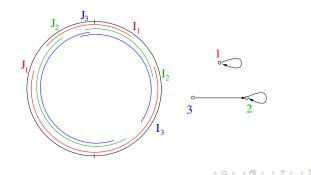
Image: A Image: A

Bi-Arc Digraphs

A bi-arc digraph H

Representable by two consistent families of circular arcs

$$I_v, v \in V(H)$$
, and $J_v, v \in V(H)$,
 $uv \in E(H) \iff I_u \cap J_v = \emptyset$



The following are equivalent

- *H* has a min ordering
- *H* is a bi-arc digraph
- *H* has no invertible circuit

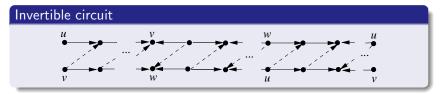
H+Rafiey 2016

★ ∃ →

The following are equivalent

- *H* has a min ordering
- *H* is a bi-arc digraph
- H has no invertible circuit

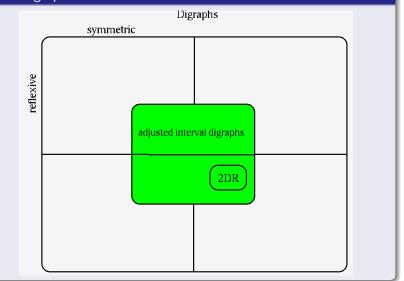
H+Rafiey 2016



< ∃ >

Bi-Arc Digraphs

Bi-arc digraphs



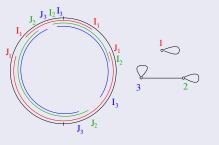
Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

Special cases of bi-arc digraphs

□ ▶ ▲ 臣 ▶ ▲ 臣

Special cases of bi-arc digraphs

 $\bullet\,$ reflexive and symmetric digraph $\iff\,$ interval graph

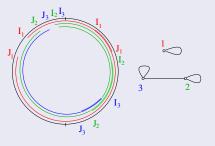


Same order: 1, 1, 2, 3, 2, 3

< ∃ >

Special cases of bi-arc digraphs

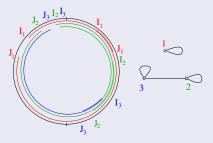
ullet reflexive and symmetric digraph \iff interval graph



Same order: 1, 1, 2, 3, 2, 3

Special cases of bi-arc digraphs

ullet reflexive and symmetric digraph \iff interval graph

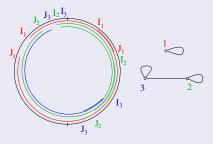


Same order: 1, 1, 2, 3, 2, 3

• reflexive digraph \iff adjusted interval digraph

Special cases of bi-arc digraphs

ullet reflexive and symmetric digraph \iff interval graph



Same order: 1, 1, 2, 3, 2, 3

- \bullet reflexive digraph \iff adjusted interval digraph
- bigraph \iff 2DR graph

同 ト イ ヨ ト イ ヨ ト

• If *H* is a **reflexive graph**, the problem is polynomial if *H* is an interval graph and NP-complete otherwise Feder-H 1998

- If *H* is a **reflexive graph**, the problem is polynomial if *H* is an interval graph and NP-complete otherwise Feder-H 1998
- If *H* is a **bigraph**, the problem is polynomial if *H* is a 2DR graph and NP-complete otherwise Feder-Huang-H 1999

- If *H* is a **reflexive graph**, the problem is polynomial if *H* is an interval graph and NP-complete otherwise Feder-H 1998
- If *H* is a **bigraph**, the problem is polynomial if *H* is a 2DR graph and NP-complete otherwise Feder-Huang-H 1999
- If *H* is a **reflexive digraph**, the problem is polynomial if *H* is an adjusted interval digraph

(and conjectured to be NP-complete otherwise) Feder-Huang-H-Rafiey 2012

- If *H* is a **reflexive graph**, the problem is polynomial if *H* is an interval graph and NP-complete otherwise Feder-H 1998
- If *H* is a **bigraph**, the problem is polynomial if *H* is a 2DR graph and NP-complete otherwise Feder-Huang-H 1999
- If *H* is a **reflexive digraph**, the problem is polynomial if *H* is an adjusted interval digraph (and conjectured to be NP-complete otherwise) Feder-Huang-H-Rafiey 2012
- For **general digraphs** *H*, the problem is polynomial when *H* is a DAT-free digraph and NP-complete otherwise (*DAT-free digraphs properly contain the class of bi-arc digraphs*) H-Rafiev 2011

・ 同 ト ・ ヨ ト ・ ヨ ト

- If *H* is a **reflexive graph**, the problem is polynomial if *H* is an interval graph and NP-complete otherwise Feder-H 1998
- If *H* is a **bigraph**, the problem is polynomial if *H* is a 2DR graph and NP-complete otherwise Feder-Huang-H 1999
- If *H* is a **reflexive digraph**, the problem is polynomial if *H* is an adjusted interval digraph (and conjectured to be NP-complete otherwise) Feder-Huang-H-Rafiey 2012
- For **general digraphs** *H*, the problem is polynomial when *H* is a DAT-free digraph and NP-complete otherwise (*DAT-free digraphs properly contain the class of bi-arc digraphs*) H-Rafiev 2011

Bulatov 2005

・ 同 ト ・ ヨ ト ・ ヨ ト

Circular arc graph

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

同 ト イ ヨ ト イ ヨ ト

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger+Debrunner+Klee 1964

When is H is a circular arc graph?

→ < Ξ → <</p>

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger+Debrunner+Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger+Debrunner+Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

• Helly property fails

- - - E - b-

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger+Debrunner+Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

- Helly property fails
- May have exponentially many maxcliques

Vertices v can be represented by circular arcs I_v , so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger+Debrunner+Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

- Helly property fails
- May have exponentially many maxcliques
- Not all perfect

/□ ▶ < 글 ▶ < 글

Recognition algorithms

▶ < □ ▶ < □</p>

Recognition algorithms

•
$$O(n^3)$$
 Tucker 1980

▶ < □ ▶ < □</p>

э

Recognition algorithms

- $O(n^3)$ Tucker 1980
- $O(n^2)$ Eschen+Spinrad 1993, Nussbaum 2007

▲□ ▶ ▲ □ ▶ ▲ □ ▶

3

Recognition algorithms

- $O(n^3)$ Tucker 1980
- $O(n^2)$ Eschen+Spinrad 1993, Nussbaum 2007
- O(m+n) McConnell 2003, Kaplan+Nussbaum 2011

▲御▶ ▲ 陸▶ ▲ 陸▶ - - 陸

Recognition algorithms

- $O(n^3)$ Tucker 1980
- $O(n^2)$ Eschen+Spinrad 1993, Nussbaum 2007
- O(m+n) McConnell 2003, Kaplan+Nussbaum 2011

Certifying algorithm?

3

Forbidden substructure characterizations

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

Forbidden substructure characterizations

• Proper CAGs Tucker 1969

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999
- Helly CAGs Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006

< ∃ >

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999
- Helly CAGs Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- Normal Helly CAGs Cao-Grippo-Safe2014

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999
- Helly CAGs Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- Normal Helly CAGs Cao-Grippo-Safe2014
- diamond-free CAGs, or paw-free CAGs, or *P*₄-free CAGs, or claw-free chordal CAGs Bonomo+Duran+Grippo+Safe 2013

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999
- Helly CAGs Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- Normal Helly CAGs Cao-Grippo-Safe2014
- diamond-free CAGs, or paw-free CAGs, or *P*₄-free CAGs, or claw-free chordal CAGs Bonomo+Duran+Grippo+Safe 2013
- \overline{K}_5 -free CAGs Francis+H+Stacho 2014

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999
- Helly CAGs Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- Normal Helly CAGs Cao-Grippo-Safe2014
- diamond-free CAGs, or paw-free CAGs, or *P*₄-free CAGs, or claw-free chordal CAGs Bonomo+Duran+Grippo+Safe 2013
- \overline{K}_5 -free CAGs Francis+H+Stacho 2014

For a co-bipartite graph H

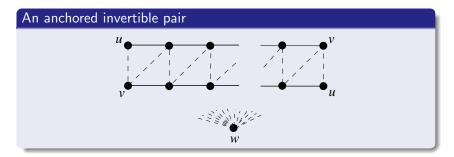
H circular arc $\iff \overline{H}$ has no induced $C_{>4}$ and no edge-asteroid

A Pulsed Obstruction Characterization

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

Image: Image:

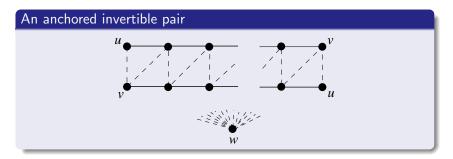
A Pulsed Obstruction Characterization



Francis+H+Stacho 2015

∃ >

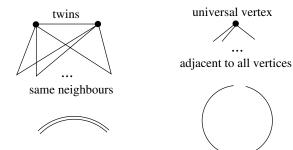
A Pulsed Obstruction Characterization



Francis+H+Stacho 2015

UNDER THE RIGHT INTERPRETATION AND ASSUMPTIONS

H has no twins and universal vertices

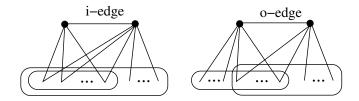


The First Twist – Standard

Each edge of H has a "type"

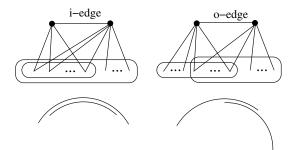
Type of edge uv

- Type *i* if $N[u] \subseteq N[v]$ ("inclusion")
- Type o if each u, v has a private neighbour ("overlap")



伺 ト イ ヨ ト イ ヨ

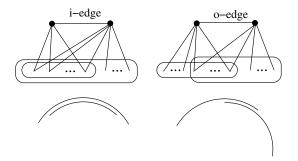
The First Twist – Standard



・ 同 ト ・ ヨ ト ・ ヨ ト

э

The First Twist – Standard



Hsu 1995

If ${\cal H}$ has a circular arc representation, then it has one corresponding to the labels

同 ト イ ヨ ト イ ヨ ト

同 ト イ ヨ ト イ ヨ ト

Circularly paired vertices u, v

• *u* and *v* are not adjacent

•
$$x \not\sim u \implies xv$$
 is an i-edge, and

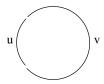
 $x \not\sim v \implies xu$ is an i-edge

A B > A B >

Circularly paired vertices u, v

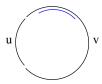
• *u* and *v* are not adjacent

•
$$x \not\sim u \implies xv$$
 is an i-edge, and
 $x \not\sim v \implies xu$ is an i-edge



Circularly paired vertices u, v

• *u* and *v* are not adjacent



The Second Twist – New

Extend H to include "complements"

Circularly paired vertices u, v

- *u* and *v* are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
 - $x \not\sim v \implies xu$ is an i-edge

Circular completion of H

If *u* is not circularly paired in *H*, we add a suitable new vertex \overline{u} ($x \sim \overline{u} \iff xu$ is not an i-edge)

The Second Twist – New

Extend H to include "complements"

Circularly paired vertices u, v

- *u* and *v* are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
 - $x \not\sim v \implies xu$ is an i-edge

Circular completion of H

If *u* is not circularly paired in *H*, we add a suitable new vertex \overline{u} ($x \sim \overline{u} \iff xu$ is not an i-edge)

Facts

Each *H* has a unique circular completion H^+ *H* is a circular arc graph $\iff H^+$ is a circular arc graph

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

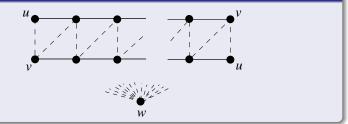
Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- *H* is circularly complete

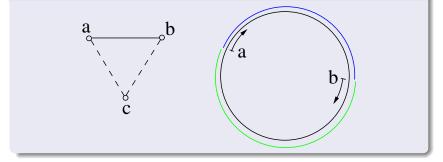
Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- *H* is circularly complete

Obstruction to circular arc graphs



Delta Triangles



< ∃ >

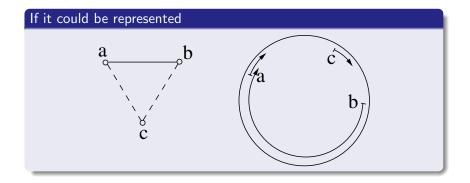
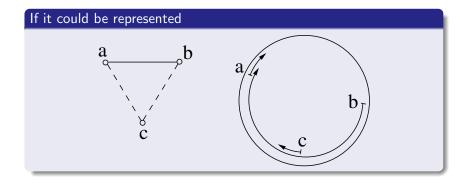
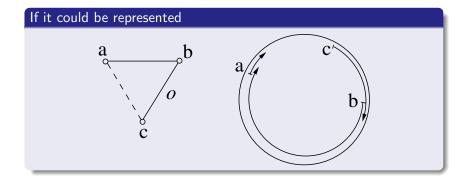


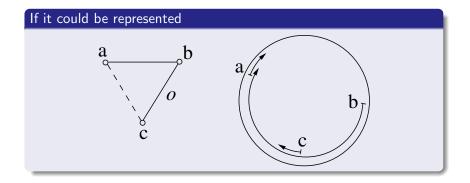
Image: A Image: A



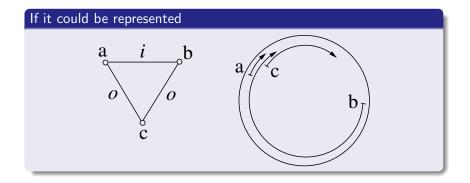
▶ ▲ 문 ▶ ▲ 문 ▶



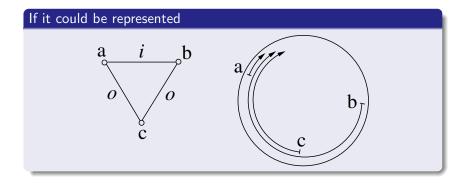
▶ ▲ 문 ▶ ▲ 문 ▶



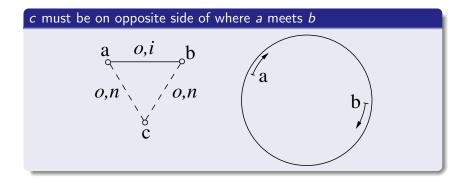
□ > < E > < E >



□ ▶ ▲ 臣 ▶ ▲ 臣 ▶



□ > < E > < E >

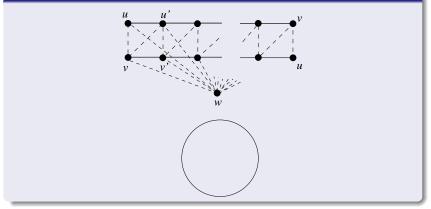


NOT ALL o

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

伺 ト く ヨ ト く ヨ ト

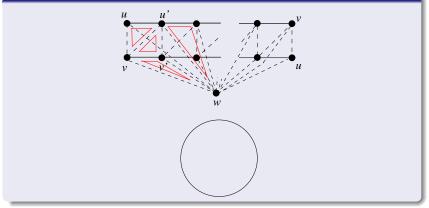
If it could be represented



□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

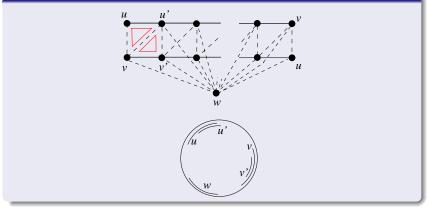
If it could be represented



御 と く ヨ と く ヨ と

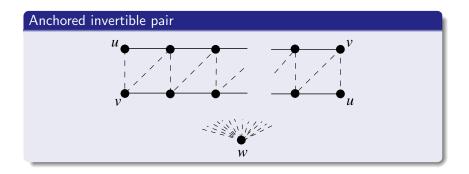
3

If it could be represented

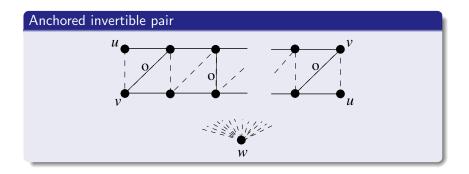


□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

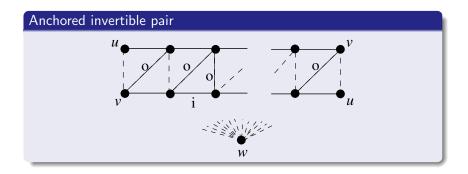
æ



Dashed line = non-edge or o-edge Each triangle with a horizontal edge is a delta triangle



Dashed line = non-edge or o-edge Each triangle with a horizontal edge is a delta triangle



Dashed line = non-edge or o-edge Each triangle with a horizontal edge is a delta triangle

Assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- *H* is circularly complete

Theorem

H is a circular arc graph \iff it has no anchored invertible pair

Francis+H+Stacho 2015

- ∢ ≣ ▶

A Certifying Algorithm

Pavol Hell, Simon Fraser University Obstruction Certificates for Geometrically Defined Graph Classes

□ > < = > <

• Delete universal vertices

同 ト イ ヨ ト イ ヨ ト

- Delete universal vertices
- Delete one of each pair of twins

★ Ξ →

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm If a represenation is found, it is the certificate

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm If a represenation is found, it is the certificate If no representation is found
 - Compute the edge-labels
 - Compute the circular completion
 - Find an anchored invertible pair (via an auxiliary graph)